Простой путь тестирования аналоговых датчиков с платой Renesas Starter Kit

Владимир МАКАРЕНКО, к. т. н. v_mak@ukr.net В статье приведена краткая информация о стартовом комплекте Renesas Solution Starter Kit, предназначенном для отладки и тестирования систем с использованием аналоговых датчиков различного назначения. Комплект включает отладочную плату и программное обеспечение, позволяющее осуществлять контроль параметров измерительной системы и ее программирование с помощью удобного графического интерфейса. В публикации дается описание основных возможностей программного обеспечения и примеры подключения некоторых датчиков.

омпания Renesas Electronics представила новый стартовый комплект Renesas Solution Starter Kit (RSSK) для разработчиков (рис. 1), использующих 32-битный микроконтроллер RX23E-A (MCU), который имеет один из самых высокоточных аналоговых интерфейсов (AFE) в отрасли [1–3].

Микроконтроллер Renesas Electronics RX23E-A — это 32-разрядный микроконтроллер с тактовой частотой 32 МГц, встроенным FPU и флэш-памятью до 256 кбайт. Устройство оснащено аналоговым интерфейсом, который позволяет подключать датчики давления, расхода, температуры и веса и выполнять измерение параметров с погрешностью менее 0,1% без необходимости его калибровки. В ИМС встроены два 24-битных $\Delta\Sigma$ -АЦП с низким уровнем шума и низким уровнем дрейфа, rail-to-rail инструментальные усилители с программируемым коэффициентом усиления 1–128, дрейфом напряжения смещения 10 нВ/°С, дрейфом коэффициента усиления 1 ррт/°С, низким уровнем дрейфа опорного напряжения 4 ррт/°С и источники тока возбуждения на кристалле.

Эффективное разрешение АЦП до 23 бит, программируемая скорость передачи данных

7600–15625 операций/с. Микроконтроллер оснащен интерфейсами: SPI×1 канал, UART×4 канала, I²C×1 канал, CAN×1 канал.

RX23E-A RSSK объединяет аппаратное обеспечение, программное обеспечение и инструменты, оптимизированные для работы с 24-битным $\Delta\Sigma$ -АЦП микроконтроллера с лучшей в отрасли точностью. RSSK позволяет пользователям, не имеющим опыта разработки аналоговых интерфейсов, реализовать процессы точных измерений, сокращая время разработки и вывода на рынок изделий, использующих микроконтроллер RX23E-A.

Оценочная плата RSSK снабжена разъемами для подключения различных датчиков без пайки, разъемом термопары и схемой компенсации холодного спая, необходимой для измерения температуры с помощью термопар. Прикладное программное обеспечение для работы с термопарами и датчиками для измерения массы (доступно для загрузки на веб-сайте Renesas) разрешает немедленно начать работу с RSSK, тем самым сокращая время, необходимое для разработки сенсорных устройств IoT.

Структура оценочной платы приведена на рис. 2 [3].

С помощью удобного графического интерфейса пользователя (GUI) можно вводить и изменять настройки различных параметров аналогового интерфейса и АЦП, а также отображать графики и гистограммы результатов аналого-цифрового преобразования. Это упрощает задачу оценки характеристик системы измерений. Посредством графического интерфейса пользователя можно проверять результаты аналого-цифрового преобразования в реальном времени так же, как и с помощью осциллографа.

Оценочную плату можно подключить к эмулятору для разработки пользовательских приложений. Питание подается через

USB-интерфейс, поэтому как оценка, так и разработка программного обеспечения выполняется с помощью ПК (рис. 3). ИМС драйверов для RS-485 и CAN, которые широко используются в промышленных устройствах, также установлены на оценочной плате, благодаря чему приложения разрабатываются с поддержкой промышленных сетевых стандартов.

Стартовый комплект поставляется с прошивкой RX23E-A, необходимой для работы отладочной платы с программным обеспечением [2]. При изменении прошивки для разработки программного обеспечения можно перезаписать ее, используя файл rsskrx23ea_fw.mot, включенный в пакет RSSKRX23EA PC tool program и Renesas Flash Programmer (RFP) V3.06.00 или более поздней версии. Программатор Renesas Flash доступен на веб-сайте Renesas. Программное обеспечение предназначено для программирования микроконтроллера и отображения результатов измерения, выполняемых с помощью RSSK RX23E-A. Для работы необходима OC Microsoft Windows 10 (32/64 бит) и NET Framework 4.7.2.

Основные функции ПО:

- 1. Проверка соединения с RSSK RX23E-A.
- Получение и установка состояния регистров RX23E-A.
- Управление запуском и остановкой аналого-цифрового преобразования.
- 4. Получение данных АЦП.
- 5. Анализ и отображение значения полученных данных от АЦП:
 - отображение формы сигнала на выходе АЦП;
 - анализ данных АЦП и отображение гистограммы их значений;
 - отображение результатов измерений.

- 6. Считывание и установка значения данных регистров AFE и DSAD (Delta-Sigma Analogto-Digital Converter):
 - считывание и установка значения данных регистров на функциональной схеме;
 - отображение значения данных регистров для измерения различных параметров.
- Отображение АЧХ фильтра SINC4 на основе значений настроек регистра.

На рис. 4 приведено рабочее окно программы.

Как следует из рис. 4, в программе доступно пять функциональных экранов: **WaveForm** форма сигнала, **Histogram** — гистограмма, **Registers** — состояние регистров, **SINC4** — АЧХ фильтра нижних частот и **Application**. На вкладке **Application** можно отображать форму сигналов всех 12 каналов одновременно.

Кнопка **Connect/Disconnect** («Подключить/Отключить») позволяет включить или отключить связь с ПК, заданную в меню «Конфигурация». Калибровка системы осуществляется при нажатии кнопки **Calibration**. Порядок подключения отладочной платы

к ПК:

- Установить перемычку JP17 (перемычка выбора режима MCU) в положение USB (2–3).
- 2. Подать питание на плату, затем подключить к ПК с помощью кабеля USB.
- 3. Запустить RSSK23EA.exe.
- Выбрать пункт меню Setting («Конфигурировать»), чтобы отобразить диалоговое окно ConnectSetting («Настройка подключения»).
- Настроить подключение (рис. 5), выбрав в поле со списком портов COM-порт — USB-порт. В поле ввода BaudRate («Скорость передачи») ввести 3000000.

6. Нажать кнопку **OK**, чтобы закрыть диалоговое окно **ConnectSetting**.

Select channe	el, input and i	- III in referen	nce voltage 1	
			_	
Channel		DSADo.cho		
Reference Vo	itage 1		٥	
			Cancel	Next
Рис. 6. Ус напряжени	тановка пере ия	зого значен	ия опорного	
Calibration				
and the second second				
input and Fill	in reference	voltage 2		
Channel		DSADo.ch0		
Reference Vo	itage 2		2.5	
	1000			
		1	Cancel	Next
	тановка втор	ого значен	ия опорного	
Рис. 7. Ус	ия			
Рис. 7. Ус напряжени				
Рис. 7. Ус напряжени				
Рис. 7. Ус напряжени				
Рис. 7. Ус напряжени				
Рис. 7. Ус напряжени				
Рис. 7. Ус напряжени Собессион	e values to Si	NC4 TAB		
Рис. 7. Ус напряжени Caloretion Substitute th Chanael	e values to Sil DSAD0.chr	NC4 TAB		
Рис. 7. Ус напряжени Сиби dion Substitute th Channel GCR0	e valves to SI DSAD0.cht 00405D29	NC4 TAB) 4218153	2	
Рис. 7. Ус напряжени Calderation Substitute th Channel GCR0 OFCR0	e valves to St DSAD0.cht 00405D29 FFFFFFE	NC4 TAB) 4218153 -2	ŝ	

7. Нажать кнопку **Connect** («Подключить»), чтобы установить соединение.

Калибровка системы

Для калибровки используется кнопка Calibration. При калибровке осуществляется считывание значений данных регистров АЦП, установка коэффициентов усиления и коррекции смещения на основе результатов аналого-цифрового преобразования двух значений входного напряжения — 1 и 2,5 В. Коррекция коэффициента усиления при калибровке включает коррекцию коэффициента усиления цифрового фильтра нижних частот SINC4.

ConnectSettin			0	×
COM Port	USB Serial Port (CC	OM4)		
BaudRate	3000000			
		OK	0	ancel

Калибровка измерительных каналов

Калибровка выполняется для каждого канала блока АЦП (DSAD). Ее можно осуществить в интерактивном режиме с контролем результатов в диалоговом окне следующим образом:

- После установления соединения с платой выбрать настройку регистра на вкладках Registers и SINC4 в соответствии с условиями использования.
- 2. Нажать кнопку Calibration, чтобы начать процедуру калибровки.
- 3. В окне Select channel, input and Fill in reference voltage 1 (рис. 6) выбрать канал блока DSAD, для которого необходимо выполнить калибровку, ввести значение опорного напряжения 1 и нажать на кнопку Next.
- 4. После получения значения A/D value acquisition ввести опорное напряжение 2,5 В и нажать кнопку **Next** (рис. 7).
- 5. После получения значения A/D value асquisition и ввода опорного напряжения появится результат калибровки (рис. 8). Нажмите кнопку OK, чтобы отобразить значения в Gain/Offset Correction («Коррекция усиления/смещения») на вкладке SINC4, а на вкладке Registers — CGR и OFCR. Чтобы применить результаты калибровки, следует установить флажки GCR и OFCR и нажать Set на вкладке Registers.

⁴⁴

Нажать кнопку **Cancel**, чтобы отменить результат калибровки и прекратить калибровку. Если в процедуре калибровки возникает ошибка, появляется сообщение об ошибке калибровки Calculation Error.

Необходимо повторить процедуру калибровки для каждого канала АЦП.

После завершения процедуры калибровки можно приступать к измерениям. На вкладке **WaveForm** отображается график формы сигнала на выходе АЦП. Можно сохранить полученные значения аналого-цифрового преобразования в файл и затем ввести сохраненные данные для отображения графика (рис. 9).

Результаты измерений сохраняются в течение 1 ч при скорости поступления данных 15,625 кбит/с.

Кнопка **Run/Stop** осуществляет пуск или остановку процесса аналого-цифрового преобразования. Кнопка **Open** позволяет открыть сохраненный файл, а кнопка **Save** сохранить результаты измерений в файл.

Кнопка **Dump** включает окно отображения значений отсчетов на выходе АЦП (рис. 10). В этом же окне можно выбрать для отображения другой канал.

Вкладка гистограммы

На вкладке **Histogram** отображается гистограмма с результатами аналого-цифрового преобразования, отображаемыми на вкладке **WaveForm** для выбранного канала блока DSAD (рис. 11).

По горизонтальной оси отображаются измеренные значения, а по вертикальной — частота их появления. Значение, отображаемое на горизонтальной оси, зависит от настроек в группе X-Axis в области настроек. Задаются минимальное и максимальное значения на выходе АЦП в десятичном коде, которые будут включены в гистограмму.

Кнопка **Run/Stop** предназначена для управления пуском и остановкой аналогоцифрового преобразования и отображения гистограммы.

Кнопка **Dump** позволяет включить окно отображения таблицы значений гистограммы (рис. 12). Таблицу можно скопировать в формате CSV. Диалоговое окно нельзя открыть во время аналого-цифрового преобразования. Открытое окно блокирует переключение вкладок.

Вкладка Registers

На вкладке **Registers** («Регистры») отображается функциональная схема AFE и DSAD RX23E-A и параметры каждой функции (рис. 13), а также значение данных каждого регистра. Каждое значение данных можно считать и ввести на функциональной схеме. При нажатии кнопки **Set** измененное значение будет представлено в RX23E-A.

Когда RX23E-A RSSK подключается нажатием кнопки Connect, воспроизводятся те-

гистограммы HistoDump

Рис. 10. Фрагмент окна отображения значений отсчетов на выходе АЦП

Рис. 11. Экран вкладки «Гистограмма»

кущие настройки RX23E-A. Каждый вариант настройки можно сохранить в файл и применить, считав из сохраненного файла.

Функциональная схема AFE и DSAD, приведенная на рис. 13, позволяет наглядно осуществлять настройку отладочной платы. Схему можно масштабировать колесиком мыши. После ввода данных в выбранном канале необходимо нажать клавишу **Enter**.

Кнопка **Reset** восстанавливает значения данных регистров, установленных в них при соединении с ПК.

Рис. 14. Экран вкладки SINC4

SING4 DUMP	÷ : 🖬	×
Frequency	Gain[dB]	
0.000000e+000	0.000000e+000	
5.000000e+000	-9.363475e-005	
1.000000e+001	-3.745414e-004	
1.500000e+001	-B.427273e-004	
2.000000e+001	-1.498204e-003	
2.500000e+001	-2.340990e-003	

Рис. 15. Таблица значений АЧХ SINC4

Вкладка SINC4

Экран вкладки SINC4 (рис. 14) предназначен для дополнительной настройки элементов, связанных с настройкой регистров, определяющих параметры фильтра SINC4, позволяет установить данные в регистрах, относящиеся к фильтру SINC4, и отображает АЧХ этого фильтра. При нажатии кнопки **Dump** отображается диалоговое окно **SINC4 DUMP**, показанное на рис. 15, в котором приводится таблица с данными АЧХ. Данные таблицы можно скопировать и сохранить в формате CSV.

График АЧХ фильтра SINC4 отображается на основе текущей настройки канала блока DSAD, выбранного в области настроек. Масштаб каждой оси задается в настройках. Пользователь может определить частоту дискретизации DSAD f_{MOD} и диапазон отображения, указав максимальную и минимальную частоту.

Файл конфигурации

Файл конфигурации создается автоматически при первом завершении работы программы для ПК. По завершении программа для ПК обновляет файл конфигурации, чтобы записать конкретные значения настроек и статус для следующих настроек запуска.

Имя файла зафиксировано на *RSSK23EA.ini*. Файл создается в той же папке, что и исполняемый файл программы для ПК (*RSSK23EA.exe*). В [2] приведен пример файла конфигурации.

Использование аналоговых входов для измерений

По умолчанию на плате перемычки устанавливаются для работы DSAD (АЦП) с использованием входов AIN2 и AIN3 или AIN8 и AIN9. В [3] приведена таблица установки перемычек в зависимости от требуемых измерений. На рис. 16 показан пример использования схемы измерения DSAD.

На заводе встроенное программное обеспечение отрегулировано для измерения дифференциального напряжения между входами AIN3, AIN2 и AIN9, AIN8 с использованием двух каналов аналого-цифрового преобразователя DSAD0 и DSAD1 в MCU.

Для определения уровня собственных шумов измерительной цепи необходимо замкнуть входные контакты с помощью перемычек JP2 и JP5.

Схема подключения термопары приведена на рис. 17. Термопара подключается через разъем СN3 с медными контактами (рис. 1). Вывод положительного потенциала термопары следует подключить к контакту AIN11 CN3, а отрицательного — к контакту AIN10. Дифференциальное напряжение, снимаемое с термопары, измеряется с помощью DSAD. Термоэлектродвижущая сила V_{TEMP} может быть рассчитана по данным AD_{DATA} , полученным в результате преобразования DSAD, по формуле:

$$V_{TEMP} = 2(V_{REF}/GAIN) \times (AD_{DATA}/2^{24}) [B],$$

где *GAIN* — коэффициент усиления программируемого усилителя (PGA), значения

которого 1, 2, 4, 8, 16, 32, 64 и 128 задаются программно.

Для измерения температуры с помощью термопары требуется компенсация холодного спая или эталонный спай. Плата обеспечивает компенсацию холодного спая с помощью встроенного резистивного датчика температуры (RTD), показанного на рис. 17.

Ток возбуждения I_{EXC0}, формируемый в RX23E-A, выводится через вывод AIN9

и проходит по пути, указанному стрелкой. Напряжение, снимаемое с RTD1, подводится ко входам AIN7 и AIN6, а снимаемое с эталонного резистора R4 — подается на входы REF1P (AIN5) и REF1N (AIN4) и используется как источник внешнего опорного напряжения для DSAD. Может отображаться сопротивление RTD1. Подробнее о схеме компенсации в [3]. Там же приведена схема подключения термопары при трехпроводном и четырехпроводном способе измерения температуры.

Схема подключения тензодатчика к отладочной плате показана на рис. 18.

На рис. 18 дан пример с использованием моста Уитстона для измерений с помощью тензодатчиков. Напряжения AVCC0 и AVSS0 (потенциал общего провода) используются как внешние опорные сигналы. В качестве источника внешнего опорного сигнала вместо AVSS0 можно применить шину LSW, подсоединенную к AVSS0 через аналоговый переключатель в RX23E-A.

Если питание тензодатчика осуществляется через шину LSW, то программно можно включать питание датчика только на время измерений, что позволяет существенно снизить энергопотребление. Ток через вывод LSW микроконтроллера в рабочем режиме может достигать 30 мА.

В [3] приведены схемы подключения периферийных устройств к микроконтроллеру и подробные инструкции по работе с отладочной платой.

Использование стартового комплекта Renesas Solution Starter Kit (RSSK), содержащего как отладочную плату, так и программное обеспечение, позволяет осуществлять быстрое тестирование различных датчиков. Программное обеспечение помогает не только контролировать результаты измерений, но и в удобной форме программировать режимы работы платы.

Литература

- 1. www.renesas.com/en-us/doc/products/mpumcu/ doc/rx_family/001/r20qs0007ej0100-rsskrx23e-a.pdf
- 2. www.renesas.com/us/en/doc/products/mpumcu/ apn/rx/013/r20an0540ej0200-rsskrx23e-a.pdf
- www.renesas.com/us/en/doc/products/mpumcu/ doc/rx_family/001/r20ut4542ej0110-rsskrx23e-a.pdf

